2023 Consumer Confidence Report

Water System Information

Water System Name: Avila Beach Community Services District

Report Date: June 24, 2024

Type of Water Source(s) in Use: Surface Water

Name and General Location of Source(s): Lopez Lake Water Supply Project (Lopez Project) and Central Coast Water Authority (CCWA) Polonio Pass Water Treatment Plant

Drinking Water Source Assessment Information: A source assessment was performed in 2001; Lopez Lake and Lopez Terminal Reservoir were found to be the most vulnerable to wastewater generation at the Lopez Recreation Area, livestock near the reservoirs, and a roadway that bisects the Terminal Reservoir. To date, these activities have not adversely impacted the WTP treated water quality. A copy of the assessment can be found at the San Luis Obispo County Public Works Department website or by contacting the Water Quality Laboratory at (805) 781-5111. Information on the State Water Project (CCWA) can be found at <u>www.water.ca.gov/swp</u>.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: **Regular meetings are held on the second Tuesday of each month at 1PM at the Avila Beach CSD office at 100 San Luis Street.**

For More Information, Contact: Avila Beach Community Services District at (805) 595-2664

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2023 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Avila Beach Community Services District a PO Box 309, Avila Beach, CA, 93424 o (805) 595-2664 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Avila Beach Community Services District 以获得中文的帮助: PO Box 309, Avila Beach, CA, 93424, (805) 595-2664.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipagugnayan sa Avila Beach Community Services District, PO Box 309, Avila Beach, CA, 93424 o tumawag sa (805) 595-2664 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Avila Beach Community Services District tại PO Box 309, Avila Beach, CA, 93424, (805) 595-2664 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Avila Beach Community Services District ntawm PO Box 309, Avila Beach, CA, 93424, (805) 595-2664 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Avila Beach CSD <i>E. coli</i>	(In the year) 0	0	(a)	0	Human and animal fecal waste

^(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	Typical Source of Contaminant
Avila Beach CSD – Lead (ppb)	2022 (various)	10	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Avila Beach CSD – Copper (ppm)	2022 (various)	10	0.520	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
CCWA Polonio Pass – Sodium (ppm)	2023	31	N/A		one None	Salt present in the water and is
Lopez Project – Sodium (ppm)	2023	28	N/A			generally naturally occurring
CCWA Polonio Pass – Hardness (ppm)	2023	78	28 – 134	None	Nono	Sum of polyvalent cations present in the water, generally magnesium
Lopez Project – Hardness (ppm)	2023	324	230 – 450		None	and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Lopez Project – Arsenic (ppb)	2023	3.6	2.0 - 5.2	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Lopez Project – Barium (ppm)	2023	0.031	N/A	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Lopez Project – Chlorine Dioxide (ppb)	2023	116	ND – 680	[800 (as ClO ₂)]	[800 (as ClO ₂)]	Drinking water disinfectant added for treatment
Lopez Project – Chlorite (ppm)	2023	0.71	0.43 – 0.84	1.0	0.05	Byproduct of drinking water disinfection
Lopez Project – Fluoride (ppm)	2023	0.32	N/A	2.0	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
CCWA Polonio Pass – Gross Alpha (pCi/L)	2022	4.9	N/A	15	(0)	Erosion of natural deposits
Lopez Project – Gross Alpha (pCi/L)	2022	3.0	1.08 – 4.92	15		
Avila Beach CSD – Haloacetic Acids – HAAs (ppb)	2023 (various)	44.5	32 – 62 ¹			
CCWA Polonio Pass – Haloacetic Acids – HAAs (ppb)	2023	26	14 – 41	60	N/A	Byproduct of drinking water disinfection
Lopez Project – Haloacetic Acids – HAAs (ppb)	2023	45.5	35 – 65 ¹			
CCWA Polonio Pass – Heterotrophic Plate Count (CFU/mL)	2023	2	0 – 29	тт	N/A	Naturally present in the
Lopez Project – Heterotrophic Plate Count (CFU/mL)	2023	ND	ND – 4	TT		environment
CCWA Polonio Pass – Total Chlorine Residual (ppm)	2023	2.87	1.05 – 4.06 ²	[4.0 (as		Drinking water disinfectant
Lopez Project – Total Chlorine Residual (ppm)	2023	2.77	2.03 – 3.24	Cl ₂)]	[4 (as Cl ₂)]	added for treatment

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant			
CCWA Polonio Pass – Total Organic Carbon (ppm)	2023	2.1	1.0 – 3.1	TT	N/A	Various natural and manmade sources			
Avila Beach CSD – Total Trihalomethanes – TTHMs (ppb)	2023 (various)	42.6	38 – 59						
CCWA Polonio Pass – Total Trihalomethanes – TTHMs (ppb)	2023	54	24 – 77	80	80	N/A	80 N/A	N/A	Byproduct of drinking water disinfection
Lopez Project – Total Trihalomethanes – TTHMs (ppb)	2023	57.8	42 – 97 ¹						
CCWA Polonio Pass – Combined Filter Effluent Turbidity (NTU)	2023	Percent below 0.3 NTU: 100%	0.04 – 0.12	TT: <1 every 4 hours TT: 95% of samples <0.3 NTU		Coil rupoff			
Lopez Project – Combined Filter Effluent Turbidity (NTU)	2023	Percent below 0.1 NTU: 100%	0.08 – 0.09	TT: <1 NTU TT: 95% of samples <0.1 NTU		Soil runoff			

Table 4. Detection of Contaminants with a Primary Drinking Water Standard, Continued

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant		
CCWA Polonio Pass – Chloride (ppm)	2023	48	13 – 105	500)0 N/A	Runoff/leaching from natural		
Lopez Project – Chloride (ppm)	2023	27	N/A	500		deposits; seawater influence		
CCWA Polonio Pass – Color (units)	2023	ND	N/A	15	45 N/A	Naturally-occurring organic		
Lopez Project – Color (units)	2023	3.7	3 – 4		N/A	materials		
CCWA Polonio Pass – Odor (TON)	2023	ND	N/A	0	N/A	2	3 N/A	Naturally-occurring organic
Lopez Project – Odor (TON)	2023	1.5	ND – 3.0	3		materials		
CCWA Polonio Pass – Specific Conductance (µS/cm)	2023	381	152 – 611	1 600	NI/A	Substances that form ions when		
Lopez Project – Specific Conductance (µS/cm)	2023	740	N/A	1,000	1,600 N/A	in water; seawater inf	in water; seawater influence	

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant	
CCWA Polonio Pass – Sulfate (ppm)	2023	42	N/A	500	500 N/A	Runoff/leaching from na	Runoff/leaching from natural
Lopez Project – Sulfate (ppm)	2023	100	N/A	500		deposits; industrial wastes	
CCWA Polonio Pass – Total Dissolved Solids (ppm)	2023	150	N/A	1 000	N/A	Runoff/leaching from natural	
Lopez Project – Total Dissolved Solids (ppm)	2023	430	N/A	1,000	N/A	deposits	
CCWA Polonio Pass – Turbidity (NTU)	2023	0.06	ND – 0.25	5	N/A	0.:1	
Lopez Project – Turbidity (NTU)	2023	0.09	N/A			Soil runoff	

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard, Continued

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
CCWA Polonio Pass – 2-Methylisoborneol (ppt)	2023	2.8	ND – 8	N/A	N/A
CCWA Polonio Pass – Geosmin (ppt)	2023	0.3	ND – 2	N/A	N/A
CCWA Polonio Pass – Hexavalent Chromium (ppb)	2023	0.094	N/A	3	Some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.

*Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. ¹ Compliance with the MCLs is based on the running quarterly annual average of distribution system samples; elevated total trihalomethanes and total haloacetic acids for one quarter due to annual disinfection change for pipeline maintenance. Running quarterly annual averages for 2023 were in compliance with the MCLs.

² Compliance with the MRDL for free and total chlorine is based on a running annual average of distribution system samples. Running annual averages for 2023 were in compliance with the MRDL.

³ There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Avila Beach Community Services District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.